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NOMENCLATURE

a minimum value of random variable

A, initial wave amplitude

b maximum value of random variable

B beta function

c shallow-water wave celerity

cq celerity of diffusion waves

Cx celerity of kinematic waves

m measured wave celerity

G, Courant number, scaling parameter of
the Saint-Venant system equation

C. dimensionless Chezy conveyance co-
efficient

D dimensionless diffusion coefficient

D, scaling parameter of the Saint-Venant
system equation

Ely] expected value of random variable y

) B distribution of random variable y

F_,F, friction scaling parameters of the

Saint-Venant system equation
F, Froude number
g acceleration due to gravity
i V-
k variable relating depth to hydraulic
radius; arbitrary constant
ky, k2 constants

probability that random variable y is
less than x

hydraulic radius of the channel

reliability estimates

slope ratio

energy gradient or friction slope of the
flow

river bed slope

standard deviation of random variable x

time

dimensionless time

flow velocity

velocity scaling variable

dimensionless velocity

coefficient of variation of random vari-
able x

longitudinal distance

dimensionless distance

flow depth

depth scaling variable

dimensionless depth

parameters of a g distribution

time scaling variable

length scaling variable

coefficient of exponential amplitude
decay of reservoir waves

correlation coefficient
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ANALYSIS OF RIVER WAVE TYPES

Michael G. Ferrick

INTRODUCTION

Long-period waves in rivers are a consequence of
unsteady flow, which may occur as a result of hydro-
electric power generation or flow control at a dam,
the breach of a dam, the formation or release of an
ice jam, or rainfall/runoff processes. River waves
have flow depths that are several orders of magni-
tude smaller than their wavelengths, so they are
classified as shallow-water waves. The study of river
waves is complicated by the hydraulic properties of
rivers and the time scales of the wave motion, which
range over several orders of magnitude. Natural riv-
ers vary greatly in size and in discharge, Impounded
rivers are both wider and deeper than they were in
their natural state, and they have diverse hydraulic
properties. Flood waves in large river systems de-
velop over several days, while those in some small
rivers can form in several minutes, Flow control and
hydroelectric turbine gates may be adjusted rapidly,
creating abrupt flow waves both upstream in the
reservoir and downstream in the tailwater river. Be-
cause of this diversity, general physical insights re-
garding river waves are elusive.

Observations indicate that river waves are a pri-
mary cause of river ice cover breakup, Therefore,

a theory describing the interactions between a river
wave and the ice cover would have great practical
importance. When a river becomes covered with ice,
frictional energy dissipation increases, but the effect
of this increased friction on river wave behavior has
not been established. This understanding is a pre-
requisite to the development of theories of ice cover
stability in the presence of river waves.

The Saint-Venant equations of continuity and
momentum are generally used to describe unsteady

flow in rivers. Within this basic model, river waves
may be classified as dynamic, gravity, diffusion, or
kinematic waves, corresponding to different forms
of the momentum equation. Dynamic waves are de-
scribed by retaining all terms of the momentum equa-
tion, As is typical of shallow-water waves, dynamic
river waves have a celerity that is related to the water
depth. The momentum equation for gravity waves
ignores the effects of bed slope and viscous energy
losses; gravity waves propagate at the dynamic wave
celerity and their flows are dominated by inertia.
Diffusion and kinematic waves are at the opposite
extreme. The diffusion wave momentum equation
ignores inertia, and the kinematic wave equation ig-
nores both inertia and the pressure gradient caused
by varying flow depths over distance. Both of these
wave types travel at a celerity governed by the fric-
tional resistance of the river bed. This celerity is re-
lated to the velocity of the flow and is significantly
slower than the dynamic wave celerity. Diffusion
and kinematic wave propagation requires the move-
ment of a large quantity of water. In this paper
these waves are frequently grouped together and are
called bulk waves.

Our present understanding of the relationships
between various river wave types is based on linear
stability theory (Ponce and Simons 1977, Menendez
and Norscini 1982). This linear theory provides use-
ful, but largely qualitative, insights into the behavior
of each wave type, and the transitions between wave
types are not considered: waves of a given type in-
clude or exclude specific terms or processes in the
momentum balance, The concept of step changes
between river wave types is not reasonable, There
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must be cases that are intermediate between wave
types, suggesting the need for a treatment of wave
transitions. Wave types are identified either by us-
ing the linear theory or by comparing magnitudes
of normalized terms of the dynamic wave momen-
tum equation (Henderson 1963, Woolhiser and
Liggett 1967), and then applying judgment to in-
terpret the results.

The object of this paper is a) to develop a quanti-
tative method for identifying river wave types and
b) to clarify the relationships between wave types.
The analysis is based on the principle that the bal-
ance between friction and inertia determines river
wave behavior. The Saint-Venant equations are
combined to form a system equation. Written in
dimensionless form, the system equation provides
scaling parameters that quantify the magnitudes of
all terms in the equation and indicate the relative
importance of friction, inertia, and pressure gradient
effects on a wave, By interpreting the scaling param-
eters probabilistically, additional data can be incorpo-
rated into the analysis to account for the variable
physical characteristics of a river and a wave. This
more general interpretation provides an improved
estimate of the friction/inertia balance, insight into
the continuous nature of transitions between wave
types, and a measure of the reliability of wave type
assessments near a transition. Finally, we identify
the scaling parameter ranges that correspond to each
wave type and transition with data from case studies.
These case studies encompass a wide range of river
and wave conditions, attesting to the general utility
of the approach.

BACKGROUND

Courant and Friedrichs (19 | noted the analogy
between nonlinear wave motion in gases and in shal-
low water, and they developed the mathematics to
trest fust-oider. quasi-linear hyperbolic flow equa-
twns for funct.ons of two independent variables.
Contnuity ot all tunctions and all required deriva-
tives vl these fun ons was assumed  Stoker (1957)
applied tha theory 1o the study of nver flow waves,
providing the mathemnatial and conceptual basis for
Ul presen! understsnding .4 river waves. Following
Stoker we .onmde 0 dealzed river with 3 wide
fectangslsl piemats . haanel and no local inflow
The Sant Venant eguations ol mass conservation
amd momentwmn balar.c are then written

a g L
1] . N l’
Ar ) ax : Ax (h

%+v%+g(%-so+sf)=0 2)
where y = the flow depth (m)
v = the flow velocity (m/s)
g = acceleration due to gravity (m/s?)
Sy = the river bed slope
S; = the energy gradient of the flow
x = the longitudinal distance (m)
t = time (s).

Stoker transformed eq 1 and 2 into their character-
istic form:

v+2e+g(Sp-Sp) 1=k, 3
along d—': =v+c,
and
v-2c+g(S;-Sy)t =k, @)

along Z—': =ype-c,

where ¢ = \/Ey— defines the shallow-water surface
wave celerity and k,; and k, are constants. The solu-
tions of dx/dt = v * ¢ yield two distinct sets of curves
in the x-t plane, called characteristics. The inverse
slopes of these curves define the dynamic wave celer-
ity, that is, the speed of shallow-water waves in 2
flowing stream. The dynamic wave celerity is inde-
pendent of the river bed and energy slopes, and ap-
pears to be the only wave speed contained in the
governing equations.

The momentum equation describing a gravity
wave is obtained from eq 2 by omitting the river
bed slope and energy gradient terms. The theory of
characteristics can also be applied for these waves,
and the resulting equations are simplified forms of
eq 3 and 4:

v+2c =k, along Z—f=v+c, *)
dx
v-2=k; along il )

Waves described by eq 5 and 6 have been termed
“smple’* waves, Gravity waves are undamped and
propagate at the dynamic wave celerity.
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The diffusion wave momentum equation is ob-
tained by neglecting the inertia terms [9v/dt, v(dv/
dx)] in eq 2. Differentiating both this momentum
equation and eq 1 with respect to x, and differen-
tiating the momentum equation with respect to ¢,
yields three equations that are combined with eq 1
to eliminate derivatives of the depth. The Chezy
equation, with dimensionless conveyance coefficient
C, assumed constant, is used to describe the energy
slope. Performing these operations yields

v v _ Ry
&"’Cda—x:Da—x’ (7)

where

s gC3RS, gC} Ry
and D= 3

Equation 7 is an advective-diffusion equation with
R the hydraulic radius of the channel. If we retain
the wide-channel assumption, the hydraulic radius
is equivalent to y/k, where k = 1 for open water con-
ditions and k = 2 if the channel is covered with ice.
The kinematic wave momentum equation is ob-
tained by omitting the inertia and the derivative of
depth with distance (9y/dx) terms in eq 2. Then,
proceeding as with diffusion waves yields the well-
known kinematic wave equation

o o _
3 +e F 0, ®)
where

3
ck"'iv.

The important distinction between the bulk waves
is that diffusion waves attenuate, while kinematic
waves do not,

Comparing eq 3 through 8, we find that the equa-
tion for river wave celerity changes with the form of
the momentum equation that is used. The celerities
of diffusion and kinematic waves are both related to
the velocity of the flow. The celerities of these bulk
waves are typically much smaller than the dynamic
wave celerity and are generally lumped together and
termed the kinematic wave celerity.

Stoker (1957) argued that because the equations
describing dynamic waves are more general, imper-
ceptible dynamic waves, or “forerunners,” must
occur simultaneously when the primary wave is kine-

matic. This concept of an ever-present role for dy-
namic waves in river flow mechanics is widely accept-
ed. Therefore, river wave studies based upon “‘sim-
plified” gravity, diffusion, and kinematic wave equa-
tions are perceived as inherently less accurate than
those using the more complete dynamic wave equa-
tions.

The governing equations for each wave type are
nonlinear, and the geometry of natural channels is
highly variable. These conditions generally require
that numerical solutions be used to describe rive.
waves. The algorithms typically chosen to solve the
dynamic wave equations in applications use first- or
second-order accurate difference approximations
and coarse numerical meshes. The solutions obtained
with these models therefore include significant errors,
due to truncation and discretization, that cause nu-
merical diffusion and dispersion of the solution.
When the effects of certain physical processes are
small relative to other processes, the terms of the
governing equation have widely different magnitudes.
Equations of this type are termed “stiff,” and are
difficult to solve numerically. Woolhiser and Liggett
(1967) reported numerical difficulties that resulted
from modeling predominantly kinematic waves using
dynamic wave characteristic equations. The stability
of explicit numerical methods depends on the dy-
namic wave celerity, even for cases where the inertia
terms are negligible. When stability problems occur,
the cure is often achieved by increasing numerical
diffusion in the algorithm, further degrading the ac-
curacy of the solution. Taken together, these con-
siderations imply that more compiete equations may
not yield more accurate river wave simulations.

The problems associated with universal applicaticn
of the dynamic wave equations suggest the alternative
approach of using physical insight to identify an ap-
propriate wave type. However, wave types cannot at
present be identified with a known degree of certain-
ty. For example, Cunge et al. (1980) stated that
rapidly varying river flows require the use of the dy-
namic wave equations, but Ferrick et al. (1984)
studied a la: ;o number of instantaneous flow releases
in two rivers and found that in all cases the inertia of
the flow was negligible. The logic linking rapid flow
variation with inertia is clear but insufficient to en-
sure dynamic wave behavior. The converse example
is that slowly developing, long-period floods behave
as kinematic waves. A more quantitative representa-
tion of the roles of friction and inertia would make
it possible to characterize and identify river wave

types.
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ANALYSIS

River waves propagating at the dynamic and kine-
matic wave celerities are generally observed in differ-
ent situations. In impounded rivers, where depth is
much greater than wave amplitude, observed wave
celerities are those of dynamic waves (Ferrick and
Waldrop 1977, Ferrick 1979), but wave propagation
observed in free-flowing rivers is more commonly at
the kinematic wave celerity (Ferrick et al. 1984).
These observations suggest that it may be possible
to distinguish between bulk and dynamic waves
simply by measuring and classifying wave celerity.

We might also reason that river waves are shallow-
water waves of extremely long wavelength, A depth
parameter nondimensionalized by wavelength, which
follows from the simple harmonic small-amplitude
wave theory of ocean gravity waves, differentiates
between deep-water and shallow-water conditions.
Extending these ocean wave classification ideas to
rivers, in light of typical wavelength differences be-
tween rapidly and gradually varying flows, suggests
that a dimensionless depth or a dimensionless wave-
length may be indicative of wave type.

A connection between the form of the momen-
tum equation and the physical characteristics of a
river and wave would provide a means to identify
wave type and would clarify the relationships be-
tween waves. Each of the river-wave types that have
been identified is described by equations that are
subsets of the Saint-Venant equations. To consider
the behavior of solutions of this equation system, we
will assume that the functions describing depth and
velocity possess continuous second derivatives and
that the river bed slope is constant. Then, differen-
tiating eq 1 and 2 with respect to distance x, differ-
entiating eq 2 with respect to time ¢, and combining
these three equations with eq 1 and 2 to eliminate
the depth derivative terms yields a system equation:

3% _ 3%y ., 3%y
P Wt )

2w v 5
R o * lear ~ %85

v, wyd
+3(a—:+v5;’—c)]5£=o ©)

in which the Chezy equation with constant Cy is
again used to describe the energy slope. The second-
order terms in eq 9 follow from the inertia and pres-
sure gradient terms in eq 2. The quasi-linear first-
order terms result from the energy or friction slope
and the bed slope terms, and the nonlinear first-order

W e W A P T

NNy At

terms are due to inertia. This system equation has
the form

3y 92

2’ :
Alx, )57 +2B(x, 1) 5= +C(x, D) 5=
e W
=f(v, o ). (10)

The second-order terms in second-order differential

equations are generally of principal significance. As
B? - AC is greater than zero, eq 9 is hyperbolic with
a pair of characteristic curves (Hildebrand 1962) de-
fined by

A(Z—j‘)2 - 2B d—’:)+c=o. an

Solving eq 11 for dx/dt again yields the dynamic
wave celerity v * ¢ as the inverse slope of the charac-
teristics,

The assumption implicit in the development of
eq 3 and 4 is that all the processes represented in eq
2 are of comparable magnitude. However, from the
perspective of the system equation, the behavic - 1
a river wave must depend on the relative contribu-
tions of inertia, friction, and pressure. When inertia
is significant, dynamic waves are of primary impor-
tance in river flow mechanics, as indicated by eq 3
and 4. The role of dynamic waves diminishes with
the relative importance of inertia. Bulk wave be-
havior indicates that the second-order terms of eq 9
are dominated by the quasi-linear first-order terms;
that is, friction dominates inertia,

An evaluation of the relative magnitudes of the
terms in eq 9 and a basis for interpreting these re-
sults would provide a quantitative measure of the
importance of each process in the momentum bal-
ance and would indicate the wave type. Writing eq
9 in dimensionless form permits an assessment of
these relative magnitudes. Introducing parameters
Vg, YV, Ax,and At, which are in some sense charac-
teristic of the flow and wave motion, we rewrite eq
9 in terms of dimensionless variables v* = v/vg, y* =
[yo,X* =x/Ax, and t* = t/At as

o%v* e v
ar*? *aG v xvars (CIv**-Dyy*) ax*?
p* Jv* 5ve2 _ Jp*
+F’y—"‘ ars t e (2F‘s)aT'

»* ® *®
236, e -0 a2

-( ‘-‘- .I~—
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where
-VOAI_VO
G s
C, & ¢ .2
D= =t (D)
2C, kAx
fizer G
S
S =_0
fo
2
U Vo 2
F3=g‘;;=(?)
Fc=FlCr

To proceed, we must define the physical scaling
variables v, Yo, Ax, and At and evaluate S, and C, .
Mean velocity and depth characterize the flow and
provide velocity and depth scales v, and y,. The
length scale that is important in the development of
river waves is related to the wavelength. With mean
flow depth as the depth scale, the comparable length
scaling parameter Ax is the half-wavelength, and
kAx([y, appearing in parameters /| and F is a di-
mensionless wavelength, The effect of friction on a
wave is cumulative over the propagation distance.

At distances less than a wavelength from the point
of wave origin, Ax is taken as half the wave propaga-
tion distance. At is the time required for the wave
to travel distance Ax. Therefore, Ax/Ar is the mea-
sured wave celerity ¢ . These three variables are
evaluated with information from a pair of gauging
stations. To obtain measured wave celerity, the river
distance between the gauges is divided by the elapsed
time between the wave arrivals. Wavelength is then
obtained by multiplying wave celerity by the mean
time for wave passage at the gauges. As the Chezy
conveyance coefficient is depth-dependent, the most
representative value of C, for a reach is obtained
from steady-flow stage measurements near the mean
of the expected range. Finally, S, is evaluated as the
mean bed slope of the river reach,

The fundamental dimensionless parameters of eq
12 are the Courant number C,, the Froude number
Fy, a friction parameter F, and the slope ratio S.
Froude number F, represents a ratio of speeds, com-
paring the characteristic flow velocity to the surface
wave celerity evaluated at the characteristic flow

DA St i Wil M )

Nl sy v —

depth. With few exceptions, the range of Froude
numbers for rivers is between 0 and 2, most com-
monly between 0 and 1. Slope ratio S compares the
river bed slope to the energy gradient of the flow
evaluated at the characteristic depth, velocity, and
channel conveyance. For free-flowing rivers the
value of the slope ratio is approximately 1, It is
higher for reservoirs, where the presence of back-
water significantly reduces the energy gradient.

The magnitudes of the terms in eq 12 directly re-
flect the importance of the physical processes they
represent. The behavior of solutions of eq 12 can be
assessed by considering C, and F; together with F
and Dy, forming a group of dimensionless scaling
parameters. Courant number C, is composed of a
characteristic flow velocity and length and time
scales that are characteristic of the wave motion; it
is the ratio of characteristic flow velocity to measured
wave celerity, limiting the range of possible values to
between 0 and 1, All terms in eq 12 except 3% v*/
dr*2 are functions of the Courant number. The
terms having the Courant number .as their dimen-
sionless scaling parameter follow from the inertia
terms of eq 2. The scaling parameter representing
the largest inertia term cannot be larger than 3 and
typically is about 1,

The effects of friction and bed slope on river flow
are represented by the first-order terms with coeffi-
cients Fy and F.. The values of these scaling param-
eters relative to 1 characterize the importance of
friction in the momentum balance and, therefore,
define the boundaries and govern the transitions be-
tween bulk, dynamic, and gravity wave types. F_ is
related to the kinematic flow number obtained by
Woolhiser and Liggett (1967) from a direct normali-
zation of eq 2. Both measured wave celerity and di-
mensionless wavelength are components of Fj and F_,
though neither alone is adequate to characterize fric-
tion. The magnitudes of the friction parameters vary
linearly with dimensionless wavelength. The meas-
ured wave celerity is a component of the Courant
number. Bulk flow cases, where the flow velocity
approaches the wave celerity, correspond to a large
Courant number and increased relative magnitudes
of the friction parameters. For the opposite condi-
tion of small flow velocity ielative to measured wave
celerity, the friction parameter magnitudes decrease
due to their dependence on the Courant number, in-
dicating a reduced role of friction relative to other
processes. The other basic component of F and F
is the dimensionless channel conveyance, which ac-
counts for differences in the rate of energy dissipa-
tion between different river and flow situations.

F_ is presented in Figure 1 as a function of the
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Figure 1. Friction scaling parameter F_ as a func-
tion of Courant number for a range of dimension-
less wavelengths and a typical dimensionless chan-
nel conveyance.

Courant number for a range of dimensionless wave-
lengths and an assumed dimensionless channel con-
veyance of about 9. Larger values of chainel con-
veyance displace the band of curves to the right,
corresponding to smaller F, with the converse true
for smaller conveyances. Courant numbers greater
than 0.4 and dimensionless wavelengths greater than
4000 are typical in natural rivers. For these condi-
tions F_ is greater than 10, indicating at least an or-
der-of-magnitude dominance of friction over inertia.
In reservoirs, wavelengths can be short due to hydro-
power operations. and flow occurs at greater depths
and smaller velocities than in free-flowing rivers.
This combination of conditions yields a small Cour-
ant number, large channel conveyance, and small di-
mensionless wavelength, and F, for reservoir waves
can be significantly less than 1. When an ice cover
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is present, the dimensionless wavelength of a given
wave and the relative magnitudes of the friction
parameters increase.

The magnitude of scaling parameter D, indicates
the importance of pressure gradient effects on the
wave. D represents the square of the ratio of the
Courant number to the Froude number, and can be
physically interpreted as the square of the ratio of
the surface wave to the measured wave celerity.
Figure 2 presents D; as a function of Courant num-
ber for a range of Froude numbers. A value of D, =
1 indicates that the measured wave celerity is equal
to the surface wave celerity at the mean flow depth.
When D, is significantly greater than 1, measured
wave celerity is much smaller than the correspond-
ing dynamic wave celerity, generally favoring bulk
wave behavior,

When the friction parameters are much greater
than 1, river flow waves exhibit bulk wave behavior
and, to a good approximation, eq 12 becomes

ve v, 5 ve? o
ot G596 g
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=, o 2o, (13)
where
D= Dy c?
F, 2F? (’fﬁx) ’
Yo

a nondimensional form of eq 7. The diffusion and
kinematic wave equations are contained within the
Saint-Venant system equation. For high-friction
flow conditions, the bulk wave portion of the system
equation is dominant, and the apparent wave celer-
ity is that of a bulk wave. The bulk flow waves de-
scribed by eq 13 are independent of the characteris-
tic equations 3 and 4.

The bulk wave Courant number is generally great-
er than 0.5, as the flow velocity is only slightly less
than the wave celerity. The magnitude of D relative
to 1 indicates the importance of wave diffusion rela-
tive to advection. D for bulk river waves is generally
less than 1, indicating that the waves are advection-
dominated. With friction dominating inertia and ad-
vection dominating diffusion, the equations describ-
ing bulk waves have evolved from a second-order hy-
perbolic system to a dominantly hyperbolic first-
order system. When S, =~ S, , the dimensionless
diffusion coefficient D varies inversely with the prod-
uct of bed slope and nondimensional wavelength.

D is presented in Figure 3 as a function of dimension-
less wavelength for a range of Froude numbers and a
dimensionless channel conveyance of about 9.

Dynamic wave behavior is indicated when the mag-
nitude of one or both of the friction parameters is on
the order of 1. As friction and inertia both make im-
portant contributions to the momentum balance, dy-
namic wave bekavior is an intermediate condition be-
tween bulk wave and frictionless gravity wave behav-
ior. Dynamic wave behavior occurs over a wide range
of conditions, and wave subtypes can be identified
that correspond to varying magnitudes of the Cour-
ant number and friction parameters.

At the transition from bulk to dynamic waves,
friction is quite great, The magnitudes of F_ and C,
are both on the order of 1, and all terms of eq 12 are
significant, defining the “complete equation™ case.
F, on the order of 1 and C, << 1 defines the “tran-
sition” case, where the flow velocity is small relative
to observed wave speed and the contribution of
friction is smaller than in the complete equation case.
The small Courant number indicates that transition
waves do not retain significant bulk wave character.
The mathematical description is also simpler, as many
of the terms of eq 12, including the nonlinear first-
order terms, are negligible. As friction is reduced fur-
ther, F and C, are << 1, and F) is reduced to the
order of 1. Negligible F,, indicates the lack of influ-
ence of the channel bed slope on the flow. These
conditions are representative of flow in reservoirs.
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Figure 3. Dimensionless diffusion coefficient of bulk waves as a func-
tion of dimensionless wavelength for a range of Froude numbers and
a typical dimensionless channel conveyance,
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The dimensional system equation for the “reservoir”
case is

92 32 1
R Ny (a4

where

14
7‘3;_,

the familiar telegraph equation or equation of a
damped vibration. Assuming that ¢ and v are con-
stants, eq 14 has solutions of the form

y=e¥t ohlxt e /1 -9 j(kPc?) 1) 15)

where & is an arbitrary nonzero constant, The resis-
tance term 9v/dr of eq 14 follows from the £; term
of eq 12; it provides exponential wave attenuation
and retards wave celerity, separating the behavior of
reservoir dynamic waves from that of gravity waves.
The amplitude decay of reservoir waves is directly
proportional to the magnitude of F;, indicating a
gradual transition between wave types.

Gravity wave behavior with dominant inertia oc-
curs when friction is negligible: F; and F, << 1.
Gravity waves, like bulk and dynamic waves, have

T TP p— TT— - el 2l adh S d 5 4
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curs when C, << 1. The system equation for this
case is the classical wave equation, obtained from
eq 14 by setting ¥ = 0. Physically, this condition is
approximated by a smooth, deep forebay of a hydro-
power station in which the flow velocity is small rel-
ative to the surface wave speed. The “simple wave”
case occurs when the Courant number is on the or-
der of 1. The method of characteristics provides a
convenient formulation (eq 5, 6) for constructing
solutions for this case. Positive disturbances upstream
generate waves with converging characteristics, lead-
ing to wave steepening and shock formation. Wave
propagation over small distances in a smooth chan-
nel may be adequately represented as a simple wave,
but, as shown in Figure 1, friction increases with
the Courant number eq 12, limiting the applicability
of these equations.

The scaling parameter magnitudes determine
wave behavior and type. The structure for under-
standing river wave behavior developed from our
analysis is depicted in Figure 4, where the progres-
sion of wave subtypes is presented in a natural order.
Only one dimensionless parameter changes in mag-
nitude between two adjacent wave subtypes, tend-
ing from friction-dominated kinematic waves to
frictionless gravity waves. The continuous depend-
ence of the scaling parameters on the scaling variables
indicates gradual transitions between wave types and

subtypes, each of which is undamped due to the subtypes.
absence of friction. The “wave equation” case oc-
De<l Kinematic
waves
Fy Fe >>1
1 c Bulk waves
0=0(1) Diffusion
waves
Cr.Fe 200 fcomplete eqn.
case
ForF, = O(1) Cre<t, Fe=00 —
River waves e Dy ic waves ! =0l Tvag:ustelon
CrFe<<! Reservoir
case
Cre<l Wave eqn.
case
Fy F <<l
Grovity waves
Cerotn Simple wave
cose

Figure 4. River wave structure obtained from the analysis of the Saint-Venant
equations,
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Probabilistic scaling parameters

Our analysis of the equations governing river
waves provides a structure with which to consider
wave behavior. Choosing representative scaling var-
iables vo, yo, Ax, At, C,, and Sy, we obtain quanti-
tative estimates of the dimensionless scaling parame-
ters F}, F, C,, and Dy. For cases sufficiently removed
from the transitions between wave types, these in-
tuitive, deterministic parameters may provide suffi-
cient information to understand wave dynamics.
However, assuming representative or mean scaling
variables provides no information about the effects
on the wave of the physical variability of the river,

It could be argued that single-valued variables cannot
meaningfully represent natural rivers, which have
significant geometric variability. An example of this
problem is attempting to characterize reservoir depth
by a mean of 6 m, when depth varies between 2 m
upstream and 15 m downstream. Further insight
concerning the transitions between river wave types
requires a more complete description of the scaling
parameters than is provided by estimates of their
mean values, A practical modeling requirement that
has not been addressed is how to assess the confidence
of wave type interpretation when scaling parameters
fall near a transition.

We will now consider the more general case where
scaling variables are continuous, possessing a mean
and a distribution. By treating these physical quan-
tities as random variables, probabilistic concepts can
be applied. As functions of random variables, the
scaling parameters are themselves random variables.
Rosenblueth (1975) developed a method for estimat-
ing the first and second moments and minimum val-
ues of a function of random variables, given the first
two or three moments of each variable and correla-
tion coefficients for each pair of random variables.
The estimate obtained of the mean value of the func-
tion is equivalent to a second-order Taylor series ap-
proximation, and the estimate of the coefficient of
variation is a first-order approximation. The method
is algebraic, replacing the distribution of each random
variable by point estimates and not requiring the com-
putation of derivatives.

Before proceeding, the Rosenblueth method for
a function of two correlated random variables will
be described in detail. The coefficient of variation
of a random variable x is defined as

S
Vx == s (16)

x
where S, is the standard deviation of x and X is the
mean. The correlation coefficient of random vari-
ables x, and x; is defined as

..........

p=PMuH) an

where cov(x, ,x,) is the covariance. A correlation
coefficient of magnitude 1 indicates a perfect linear
correlation between the variables, while a coefficient
of 0 indicates uncorrelated variables. The scaling
variable ranges corresponding to the propagation of
a river wave through a reach are relatively small.
Numerical experiments have shown that if the rela-
tionship between random variables over a limited
range can be written as

X3 =axy, (18)

then the magnitude of p will be approximately 1.

In general, sufficient data will not be available to
describe the precise nature of the distribution of
each scaling variable. Therefore, for simplicity we
will assume that these distributions are symmetric
about the mean value. The point estimates repre-
senting the distribution of a scaling variable are then

1+
P++ =P_-=—'4_p- ’
(19)
1=
P+_=P_+ =_E&.

These point estimates sum to 1 and, in the case of
uncorrelated random variables, are each %. The
point estimates provide weighting factors for evalu-
ating the function at points a standard deviation
from the mean of each random variable:

Vs =y(xl "'Sxl ¥ X2 +SXz)’
Ve S¥EL + 8¢ %2 -8, ),
20
Yot =y(xl -sxl » X2 +Sx,)’
Vo =y(x1 =Sy, , X2 -5, ).

Then, the expected values or moments of the func-
tion can be obtained:

E")=P, .y}, +P, ¥}
@n
+tP_ Y0 +P_yn .

The expected value or mean of y is found by setting
n =1, The variance of y is readily computed as

V1=Ep*]-EDD =] . (22)




v

LSl Nl gty o o

\\

iRt Yabe Janiutan s 2t
R T R SN

Table 1. Application of Rosenblueth (1975) method to
Liard River data.

Input: v, = 0.72 m/s, Yvo

=025, ¢=14m/s, V. =020

Output: y=Cp = 0.5357(++), 0.8036(+-), 0.3214(-+), 0.4821(~--)

p=0.6

Elc,) 0.520
ViC,) 0.0127
Ve 0.216

T

Rosenblueth (1975) discussed the generalization of
this technique to functions of any number of ran-
dom variables.

A sample calculation using Rosenblueth’s proce-
dure to obtain parameters describing the Courant
number distribution for data from the Liard River
(Parkinson 1981, 1982) is given in Table 1. The
coefficients of variation chosen for wave celerity
bound most of the observed values within one stan-
dard deviation of the mean. Because the mean flow
velocity is a computed value, a relatively large coef-
ficient of variation for velocity was assumed. Flow
velocity and wave celerity for bulk flow waves can
be related by an equation of the form of eq 18 and
p ~ 1. However, to examine the sensitivity of the
computation to the correlation coefficient, results
are given in Table 1 for three different p values.
With increasing p the mean Courant number decreas-
¢s only slightly, but the variance and coefficient of
variation decrease significantly. Estimates of the
maximum and minimum values of the Courant num-
ber distribution should be greater than C;, _ and less
than C;_ , respectively.

Given a function of random variables, Rosen-
blueth’s method provides an improved estimate of
the mean and estimates of scatter about the mean
and the limits of the distribution. The mean, stan-
dard deviation, and limits of a random variable unique-
ly specify a g distribution. Harr (1977) gives the
general expression for this distribution as

) GamrEiss) (b2) @

where

a=Z 15)- ) ,
y

p=0.8 p=1.0

0.514 0.509

0.0067 0.0007

0.159 0.053
and

. _[y4

745)
where a2 and b are the minimum and maximum val-
ues of y, respectively, and B is a beta function.
When a and § have the same sign, the g distribution
is unimodal and bell-shaped. The coefficients of
skewness and kurtosis of the g distribution can be
readily obtained. With this distribution the proba-
bility of y in a given range can be determined.

To incorporate the effects of the physical varia-
bility of the river on the wave, we will use the Ros-
enblueth method and obtain a corresponding f§ dis-
tribution of the friction scaling parameters. This
procedure allows further investigation of the bulk/
dynamic and dynamic/gravity wave transitions and
provides a reliability estimate for wave type deter-
mination when the friction parameter mean is near
a transition.

Case studies

The river wave structure that has been developed
depends on parameter magnitudes that are large or
small relative to 1 or are on the order of 1. We will
now use experience from case studies to define more
precisely the parameter ranges corresponding to each
wave type and transition. We will also classify a num-
ber of diverse river wave cases and consider changing
wave behavior over distance to test the usefulness
and practicality of our analysis.

Individual case studies and physical variables rep-
resentative of each river and wave are presented in
Table 2, as well as the first-order Taylor series ap-
proximations of the mean values of the scaling param-
eters—that is, the parameter evaluated at the mean
values of all scaling variables. Estimated Manning’s
roughness and river bed slope values are designated

g= atl @) , in the table with ane. For free-flowing rivers where
y @ measured velocities were unavailable, the Chezy
10
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equation with the characteristic depth, river bed
slope, and conveyance was used to obtain a comput-
ed mean characteristic velocity, which is designated
with a c. The mean velocity for reservoirs was com-
puted using the continuity equation from the mean
discharge, channel width, and characteristic depth.

Bulk flow waves occur when the friction parame-
ters are sufficiently large relative to 1. Because the
Courant number is by definition less than 1, F; is
always smaller than F; and is the natural parameter
to define the boundary between bulk and dynamic
waves. Parkinson (1981, 1982) studies the river
waves that initiated ice-cover breakup on the Liard
and Mackenzie Rivers. These waves had long peri-
ods, characteristic of spring flood waves in large
river systems. The bulk wave behavior that occurred
is reflected in the large friction parameter magnitudes
for these cases. Large values of F also correspond
to data from open-water and flow-over-the-ice con-
ditions in a free-flowing reach of the Ottauquechee
River (Ferrick and Lemieux 1983), again indicating
bulk wave behavior. Ferrick (1980) numerically
modeled rapidly varied flow waves from laboratory
studies of dam breaches at the Waterways Experi-
ment Station. A wave release to a previously dry
channel, corresponding to a mean F; value of 11,
was precisely simulated using a bulk wave numerical
model. In addition, Ferrick et al, (1984) found that
rapidly varied flow waves in the Hiwassee and Clinch
Rivers, with a minimum mean F; value of 12, behaved
as bulk waves,

According to these observations, F; greater than
about 10 indicates bulk wave behavior. The system
equation terms that are more than an order of mag-
nitude smaller than the other terms are apparently
negligible. With this guideline we can approximate
the transitions between wave types and subtypes as
corresponding to scaling parameter magnitudes
greater than 10 (>> 1) and less than 0.1 (<< 1). Be-
cause the scaling parameters representing a given
river reach and wave are continuous, however, any
single-valued definition of a transition is inadequate.
The governing equations used for analysis change
between bulk, dynamic, and gravity wave conditions,
and these transitions will be considered in detail.

All of the bulk wave cases have mean Courant
numbers greater than 0.5 (Table 2), a necessary but
apparently not sufficient condition for the occur-
rence of bulk waves. Table 2 also confirms that large
dimensionless wavelengths favor but do not guaran-
tee bulk wave behavior. The wave diffusion present
in all cases was sufficient to prevent the formation
of a shock wave or depth discontinuity at the wave
front. However, as the magnitude of D approaches
0, the probability of wave steepening and shock

11
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formation increases. Only in the Clinch River was
wave diffusion sufficient to produce significant

wave peak attenuation. These observations support
the order-of-magnitude approximation for locating
the transition between the bulk wave subtypes. Mean
dimensionless diffusion coefficients less than about
0.1 indicate kinematic waves, and diffusion waves
occur when D is larger.

The case studies from Table 2 that bracket the
bulk/dynamic wave transition F, = 10 are waves
having a 1-hr period on the Clinch River and a short-
period wave on the Ottauquechee River that occurred
immediately following ice cover breakup (moving
ice). In this discussion we refer to these cases as
simply Clinch River and Ottauquechee River. The
extensive documentation available from the Clinch
River study allows well-supported estimates of the
coefficient of variation for the scaling variables,
These values were chosen so that the majority of the
data fall within one standard deviation of the mean,
and essentially all data are within three standard
deviations of the mean. With less data available
from the Ottauquechee River, we assume for pur-
poses of comparison that the coefficients of varia-
tion equal those from the Clinch River. The coeffi-
cients of variation of velocity, wave celerity, wave-
length, and hydraulic depth were taken as 0.15, and
as 0.20 for channel conveyance. For both cases,
correlation coefficients for velocity/depth, convey-
ance/depth, velocity/celerity, and wavelength/celer-
ity were specified. Observed bulk wave celerity on
the Clinch River indicates a velocity/wavelength
correlation. The relatively high wave celerity on the
Ottauquechee River indicates dynamic wave effects,
and wave celerity/depth and wavelength/depth cor-
relations. The correlated variables for river flow are
related analytically in the form of eq 18, and there-
fore correlation coefficients of 1 were assumed.

With these input data, Rosenblueth’s method
yields the mean, coefficient of variation, and mini-
mum and maximum F, values presented in Table 3.
Table 3 also includes parameters of the -distribution
fit to F, and probabilities of £ in sefected ranges for
each case. We note that the second-order estimates
of the mean for each case are significantly larger
than the first-order estimates in Table 2. The rela-
tively large coefficients of variation of F indicate
that these distributions have significant spread. The
p distributions representing the F distributions for
the Clinch and Ottauquechee Rivers (Fig. 5) extend
a significant distance on either side of the approxi-
mate transition, F; = 10, Therefore, a finite proba-
bility exists that bulk or dynamic wave behavior will
occur in each case. This fact implies that point esti-
mates of F, falling near a transition are of limited
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Table 3. Bukk/dynamic wave transition.

Case )

Vi, Fepin Femax

a B P[F.<8] P[F.<10] P[F.<12]

Clinch River 15.1 0477 3.0 50 0.838 4.30 0.17 0.28 0.39
Ottauquechee 8.7 0.375 2.0 30 197 8.35 0.46 0.68 0.84
River
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Figure 5. Probability distributions of friction scaling parameter
F, representing case studies of the Clinch River and the Ottau-

quechee River.

value as indicators of wave type, and emphasizes
that the transitions between wave types in rivers are
continuous. If we consider the transition range

8 <F, £ 12, the ratio of probabilities, R, , of bulk-
to-dynamic wave behavior for F, outside this range is

G > 0.1, In these relatively high friction cases,
where dynamic waves typically result from some
rapidly varying initial condition, frictional effects
can eventually restore bulk wave behavior. Down-
stream-propagating waves following a dam breach
or the sudden release of an ice jam are examples of

_PlF>12] ” such cases. Stoker (1957) simulated the propagation
' P[F,<8] - 24) of the front of a hypothetical, rapidly varying, large-

Values of R, near 1 do not identify wave type, but
progressively larger deviations from 1 indicate wave
type with increasing reliability, In our case, R,
(Clinch) = 3.6 and R, (Ottauquechee) = 0.35, indi-
cating probable bulk wave behavior and probable dy-
namic wave effects, respectively. The diagnosis of
Clinch River bulk wave behavior is strongly support-
ed by modeling results (Ferrick et al. 1984).
Dynamic waves span a range of the friction param-
eters of about two orders of magnitude. The scaling
parameter bounds that identify complete-equation
dynamic waves are roughly defined as £, < 10 and

amplitude flood wave on the Qhio River using the
dynamic wave equations. At the upstream boundary
he imposed a 1.5-m/hr rise in the water level for a
4-hr period between initial and final steady-flow
conditions. The magnitudes of the friction parame-
ters and the Courant number for 2 hr after the initi-
ation of the wave (Table 2) indicate significant iner-
tia. However, average scaling variables representative
of the first 10 hr of the simulation yield mean fric-
tion parameters in the bulk wave range. Mean scal-
ing variables representing the latter part of this time
period produce even larger friction parameter magni-
tudes and a mean Courant number greater than 0.5.

.
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Stoker stated that prior to his work more gradual
flood waves recorded on the Ohio River had been
successfully described with bulk wave models, as
would be expected based on our analysis.

The other complete-equation dynamic wave
cases given in Table 2 are predominantly rapidly
varying flow waves with small dimensionless wave-
lengths. This group of cases includes a laboratory
dam breach release to a channel with a significant
base flow (WES flume-wet), laboratory studies (Fer-
rick 1984) of the effects of bed slope and ice cover
upon a sequence of flow waves (CRREL flume),
and three waves on the Ottauquechee River immedi-
ately prior to and during ice cover breakup. The
laboratory flume cases each had bulk measured wave
speeds, but because of very smooth channels the
friction parameters fall in the dynamic wave range.
At break-up the Ottauquechee study reach was
ponded to a large depth relative to wave amplitude.
The channel conveyance at the breakup was much
smaller than in the laboratory studies, but the meas-
ured river wave celerities approached those of dy-
namic waves and are reflected in small Courant num-
bers. The upstream half of ice-covered Pine Falls
reservoir (Kartha 1976) is a complete-equation dy-
namic wave case that did not involve a short-period
flow wave. However, a large channel conveyance
and a low flow velocity relative to measured wave
celerity compensate for a relatively large dimension-
less wavelength.

The Courant number for the transition dynamic
wave case is smaller than that for the complete equa-
tion case, and the friction parameter F, is also gener-
ally smaller. The dimensionless scaling parameter
bounds that identify transition dynamic waves are
roughly defined as F, > 0.1 and C; < 0.1, Waves of
2-hr and 6-hr durations in the ice-covered St. Lawr-
ence River between Lake Ontario and Cardinal,
Ontario (Yapa 1983), are examples of transition-case
dynamic waves. The observed wave celerity was that
of a dynamic wave and was much greater than the
flow velocity.

The reservoir dynamic wave case is characterized
by a small flow velocity relative to measured wave
speed and relatively small frictional effects. This
case is roughly defined by dimensionless parameters
F, and C, < 0.1, In Table 2 waves from hydroelec-
tric power generation in Old Hickory Reservoir on
the Cumberland River (Ferrick 1979), in the down-
stream half of Pine Falls Reservoir on the Winnipeg
River (Kartha 1976), and in Wheeler Reservoir on
the Tennessee River (Ferrick and Waldrop 1977) are
reservoir waves. Wave propagation in the upstream
portion of the Old Hickory and Wheeler Reservoirs
is subject to larger frictional effects than farther

---------------
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downstream and, if analyzed separately, would be
classified as a higher-friction dynamic wave type.
For each of these cases friction remains important,
as velocity decay to 10% of the original amplitude
occurs within a 4- to 6-hr period (eq 15).

The case studies compiled in Table 2 do not in-
clude a case that falls in the gravity wave range. The
reservoir dynamic waves are the smallest friction
cases available, with estimated mean Fy values of
about 1 from the Old Hickory, Pine Falls, and
Wheeler Reservoir data. We will use the 2-hr wave
period data from Wheeler Reservoir to consider the
dynamic/gravity wave transition. A treatment of
this boundary consistent with that used for the
bulk/dynamic wave transition provides values of F}
between 0.083 and 0.125 as the transition range.
Table 4 presents wave amplitude decay times of
2-hr period waves on Wheeler Reservoir for Fy as
computed and bounding the transition. The actual
conditions are far removed from the transition.

The scaling variables presented in Table 2 for
Wheeler Reservoir are mean values for the complete
reservoir. These values, repeated in Table 5 along
with estimated coefficients of variation, provide in-
put for the Rosenblueth method. Wheeler is a typi-
cal reservoir in that dramatic changes in depth and
flow velocity occur over its length, reflected in large
coefficients of variation. If we partition the reser-
voir and consider the 40-km reach farthest down-
stream, this physical variability is greatly reduced.
All coefficients of variation are reduced by roughly
a factor of 2, which, for purposes of comparison,

Table 4. Wave amplitude decay time (hr).

Amplitude/A, Fy=1.0 Fy=0125 Fy=0.083

0.9 0.2 1.7 2.5
0.5 1.4 11 17
0.1 4.6 37 $S

Table 5. Input data for Rosenblueth’s method.

Wheeler Reservoir Wheeler Reservolr

{complete) (downstream )
Variadle x Vx x Vx
Yo(m) 5.9 025 8.0 0.125
ve(m/s) 0.2 1.0 01 0S5
c, 155 0.02 155  0.01
em(m/s) 6.7 0.18 8.8 0,075
Ax(m) 24,000 0.15 31,000 0.07S
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Table 6. Dynamic/gravity wave transition.

Case B VFy Flmin Flmax @ 8 P[F1<0.083] P[F1<0.100] P[F1<0.125]
Wheeler Reservoir 0.65 0.457 0.0 38 28 175 0.0017 0.0033 0.0070
Wheeler Reservoir 0.35 0.268 0.0 1.0 7.7 154 0.0001 0.0005 0.0025

{downstream)
5 T | 1 ‘]’ T ' 1
a- r —
[\
|\
3 | \Wheeler Reservoir —
| \ (downstream)
I
2 || -
! \
! 4
| r_ Wheeler Reservoir -
A
0 0.5 10 1.5 20
Fr

Figure 6. Probability distributions of friction scaling parame-
ter Fy representing case studies of Wheeler Reservoir and the
downstream portion of Wheeler Reservoir.

we assume is exactly the case. In addition, the mean
flow depth in the lower portion of the reservoir is
greater and the velocity is smaller than values repre-
senting the complete reservoir, moving Fj toward
the dynamic/gravity wave transition. These data are
also given in Table 5. The correlation coefficients
used in the method were identical to those for dy-
namic waves in the Ottauquechee River.

Presented in Table 6 are parameters of the F
distribution for both cases from the Rosenblueth
method, parameters describing a -distribution fit
to Fy, and probabilities bounding and within the dy-
namic/gravity wave transition. The second-order
estimate of the mean for the complete reservoir is a
third smaller than the first-order estimate given in
Table 2. The mean Fy of the downstream portion
is about one-half the value for the complete reser-
voir, with a significantly smaller coefficient of varia-
tion. The ratio

_P[F; > 0.125)

2 *F{F, < 0.083] ° @)

where a large value of R, relative to 1 indicates dy-
namic wave behavior and an R, value much less
than 1 indicates gravity wave behavior, reveals that
neither case approaches the wave transition. The
pronounced difference in spread between the Fy
distributions and the small probability that Fj is
less than 0.1 can be readily seen with a plot of these
distributions (Fig. 6). These results demonstrate
that river waves in reservoirs may resemble gravity
waves over small distances, but waves propagating
more than a few wavelengths are significantly af-
fected by friction.

CONCLUSIONS

The Saint-Venant system equation, formed by
combining the continuity and momentum equations,
contains a pair of wave celerities. The dynamic
wave celerity is associated with the second-order
terms, which are due to inertia and the pressure
gradient, and the kinematic wave celerity is associ-
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ated with the first-order terms, which are due to bed
slope and friction. River wave behavior is controlled
by the balance between friction and inertia. The
nondimensional scaling parameters of the Saint-
Venant system equation can be used to quantify
this balance. The dimensionless parameters define

a spectrum of river waves, with continuous transi-
tions between wave types and subtypes. Dynamic,
gravity, diffusion, and kinematic waves correspond
to specific scaling parameter ranges of this spectrum.
Bulk waves occur when the friction terms of the

system equation dominate the inertia terms. Dynam-

ic waves occur when the second-order inertia terms
of the system equation are significant. Because fric-
tion in rivers is generally important, there are few
cases where the inertia terms dominate the friction
terms and river waves behave as gravity waves.

The parameter range corresponding to each wave
type and transition was defined using data from
case studies, allowing direct application of the scal-
ing parameters for identification of wave type. The
capability to identify wave type is necessary to the
construction of appropriate mathematical models of
river flow. Changes in wave behavior with propaga-
tion distance for rapidly varying initial flow condi-
tions and changes resulting from the presence of an
ice cover can be addressed quantitatively using the
scaling parameters. Interpreting the scaling parame-
ters as random variables supplies the generality need-
ed to consider waves in rivers with significant physi-
cal property ranges and provides a measure of the
reliability of wave type assessments near a transition.
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